7,793 research outputs found

    David Thompson's Journey's in Idaho

    Get PDF
    "Many students of the Columbia River Basin are hardly yet alive to the important contributions made to the early geographic knowledge of the northerly half of this great interior basin by David Thompson…

    Double Charge Exchange And Configuration Mixing

    Full text link
    The energy dependence of forward pion double charge exchange reactions on light nuclei is studied for both the Ground State transition and the Double-Isobaric-Analog-State transitions. A common characteristic of these double reactions is a resonance-like peak around 50 MeV pion lab energy. This peak arises naturally in a two-step process in the conventional pion-nucleon system with proper handling of nuclear structure and pion distortion. A comparison among the results of different nuclear structure models demonstrates the effects of configuration mixing. The angular distribution is used to fix the single particle wave function.Comment: Added 1 figure (now 8) corrected references and various other change

    Temperature and orientation dependence of kinetic roughening during homoepitaxy: A quantitative x-ray-scattering study of Ag

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevB.54.17938 DOI:10.1103/PhysRevB.54.17938Kinetic roughening during homoepitaxial growth was studied for Ag(111) and Ag(001). For Ag(111), from 150 to 500 K, the rms roughness exhibits a power law, σ∝tβ over nearly three decades in thickness. β≈1/2 at low temperatures, and there is an abrupt transition to smaller values above 300 K. In contrast, Ag(001) exhibits layer-by-layer growth with a significantly smaller β. These results are the first to establish the evolution of surface roughness quantitatively for a broad thickness and temperature range, as well as for the case where growth kinetics are dominated by a step-ledge diffusion barrier.Support is acknowledged from the University of Missouri Research Board, the NSF under Contract Nos. DMR-9202528 and DMR-9623827, and the Midwest Superconductivity Consortium ~MISCON! under DOE Grant No. DE-FG02-90ER45427. The SUNY X3 beamline is supported by the DOE under Contract No. DE-FG02-86ER45231, and the NSLS is supported by the DOE, Div. of Materials Sciences and Div. of Chemical Sciences. One of us ~W.C.E.! acknowledges support from the GAANN program of the U.S. Department of Education. We thank Ian Robinson for the Ag~111! crystal

    Commensurate and modulated magnetic phases in orthorhombic A1C60

    Full text link
    Competing magnetically ordered structures in polymerized orthorhombic A1C60 are studied. A mean-field theory for the equilibrium phases is developed using an Ising model and a classical Heisenberg model to describe the competition between inter- and intra-chain magnetic order in the solid. In the Ising model, the limiting commensurate one-dimensional and three-dimensional phases are separated by a commensurate three-sublattice state and by two sectors containing higher-order commensurate phases. For the Heisenberg model the quasi-1D phase is never the equilibrium state; instead the 3D commensurate phases exhibits a transition to a continuum of coplanar spiral magnetic phases.Comment: 11 pages REVTeX 3.0 plus 4 figures appende

    Overlap of heritable influences between Cannabis Use Disorder, frequency of use and opportunity to use cannabis: Trivariate twin modelling and implications for genetic design

    Get PDF
    Background: The genetic component of Cannabis Use Disorder may overlap with influences acting more generally on early stages of cannabis use. This paper aims to determine the extent to which genetic influences on the development of cannabis abuse/dependence are correlated with those acting on the opportunity to use cannabis and frequency of use. Methods: A cross-sectional study of 3303 Australian twins, measuring age of onset of cannabis use opportunity, lifetime frequency of cannabis use, and lifetime DSM-IV cannabis abuse/dependence. A trivariate Cholesky decomposition estimated additive genetic (A), shared environment (C) and unique environment (E) contributions to the opportunity to use cannabis, the frequency of cannabis use, cannabis abuse/dependence, and the extent of overlap between genetic and environmental factors associated with each phenotype. Results: Variance components estimates were A = 0.64 [95% confidence interval (CI) 0.58–0.70] and E = 0.36 (95% CI 0.29–0.42) for age of opportunity to use cannabis, A = 0.74 (95% CI 0.66–0.80) and E = 0.26 (95% CI 0.20–0.34) for cannabis use frequency, and A = 0.78 (95% CI 0.65–0.88) and E = 0.22 (95% CI 0.12–0.35) for cannabis abuse/dependence. Opportunity shares 45% of genetic influences with the frequency of use, and only 17% of additive genetic influences are unique to abuse/dependence from those acting on opportunity and frequency. Conclusions: There are significant genetic contributions to lifetime cannabis abuse/dependence, but a large proportion of this overlaps with influences acting on opportunity and frequency of use. Individuals without drug use opportunity are uninformative, and studies of drug use disorders must incorporate individual exposure to accurately identify aetiology

    Nucleosynthesis in the Early Galaxy

    Full text link
    Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements Z47Z\leq47. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-poor stars, it is shown that the mixing of a consistent and robust light element primary process (LEPP) and the r-process pattern found in r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we derive the abundance pattern of the LEPP from observation and show that it is consistent with a missing component in the solar abundances when using a recent s-process model. As the astrophysical site of the LEPP is not known, we explore the possibility of a neutron capture process within a site-independent approach. It is suggested that scenarios with neutron densities nn1013n_{n}\leq10^{13} cm3cm^{-3} or in the range nn1024n_{n}\geq10^{24} cm3cm^{-3} best explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical Journa

    Modelling the net environmental and economic impacts of urban nature-based solutions by combining ecosystem services, system dynamics and life cycle thinking: An application to urban forests

    Get PDF
    Nature-based solutions (NBS) are gaining relevance as sustainable urban actions because of their potential to provide multiple benefits in the form of ecosystem services (ES), and thus mitigate urban challenges. This paper presents an original semi-dynamic modelling framework that simultaneously considers i) ES supply and demand dynamics, ii) negative environmental impacts, externalities, and financial costs derived from NBS, and iii) life cycle NBS impacts beyond the use phase. Compared to other models, it also aims to be valuable for urban planning actions at site level, i.e., for evaluating the net impacts of specific urban NBS projects. To validate the modelling framework, a proof-of-concept model for urban forests is developed and tested for a case study in Madrid (Spain). The modelling framework is split in two interrelated parts: foreground (dynamic modelling) and background (static modelling). In the foreground, the environmental impacts derived from the use phase of an NBS project are quantified considering its spatio-temporal dynamism, by making use of system dynamics. In the background, the environmental impacts derived from the rest of the life cycle phases of the NBS are quantified making use of steady state life cycle impact assessment. The net economic impact of the NBS project, considering both financial values and externalities, is eventually calculated in the background encompassing all the life cycle phases. Results from the case study illustrate how planning, design, and management decisions over the entire life cycle of an urban forest can influence the net environmental and economic performance of this type of NBS. A discussion is provided to inform on how the modelling framework can help moving beyond the state-of-the-art, and how the derived model can be used for sustainability assessments of urban NBS projects

    Critical Constraints on Chiral Hierarchies

    Get PDF
    We consider the constraints that critical dynamics places on models with a top quark condensate or strong extended technicolor (ETC). These models require that chiral-symmetry-breaking dynamics at a high energy scale plays a significant role in electroweak symmetry breaking. In order for there to be a large hierarchy between the scale of the high energy dynamics and the weak scale, the high energy theory must have a second order chiral phase transition. If the transition is second order, then close to the transition the theory may be described in terms of a low-energy effective Lagrangian with composite ``Higgs'' scalars. However, scalar theories in which there are more than one Φ4\Phi^4 coupling can have a {\it first order} phase transition instead, due to the Coleman-Weinberg instability. Therefore, top-condensate or strong ETC theories in which the composite scalars have more than one Φ4\Phi^4 coupling cannot always support a large hierarchy. In particular, if the Nambu--Jona-Lasinio model solved in the large-NcN_c limit is a good approximation to the high-energy dynamics, then these models will not produce acceptable electroweak symmetry breaking.Comment: 10 pages, 1 postscript figure (appended), BUHEP-92-35, HUTP-92/A05
    corecore